Internet appendix to

Order Flow and Expected Option Returns

A.1. Introduction

This appendix reports additional results that seimgint the results in the main paper.
Specifically, Section A.2 introduces a method tccamt for endogeneity between trades and
guotes and to compute expected price chan@estion A.3 studies the effect of price
discreetness and tick size on the price impact components; Section A.4 examines the effect of
trade size misclaffication; Section A.5 checks for “hot-potatotrading in options; Section A.6
reports how price impact components vary by optiochange; Section A.7 examines outliers
and their effect; Section A.8 compares information impact of option trades for individual stocks
and ETFs; Section A.9 shows that past order imbalance meagwriesarily future inventory
shocks; Section A.10 discusses the most significant predictors of fitption returns excluding
past order imbalance; finally, Section A.11 checks the robustness of option return predictability

by past order imbalances.

A.2. Accounting for expected changes in price

This section explains how my microstructure methactounts for the effect of
endogeneity between trades and quotes on the adyicim&rmation component of price
impact. Stale public information is a good prediabfuture intraday changes in the bid and ask
prices. This predictability does not affect thedntory risk component in Eq. (10) but it affects
the asymmetric information componemt Eq. (9). Trades and quotes are endogenous; more
specifically, buy (sell) trades tend to arrive wtiba quoted price is about to increase (decrease)
anyway, so that only a part of the observed ine@agprice is caused by a trade.

Hasbrouck (1991) and numerous subsequent paperfiasimp the importance of
accounting for expected price changes in estimadiigg impact. Muravyev and Pearson (2014)

adopt this idea and show its importance for theoogt market. They find that observed price



impact significantly overstate the causal impactrafles if not accounted for expected changes
in price. My approach closely follows Muravyev dpearson (2014).

The expected quote changes due to slow public imdton diffusionE (Apf |F.,) at
trade times t*, can be estimated in two stepst,Firdinear regression approximate@\pg|F;)
and is estimated on historical data for regulapggiced time intervals t. After that, the estimated
model is applied to public informatidn, at the time of trades.

The first step is implemented as follows. The cleaimgthe option ask (bid) price for a
given exchange over the next five seconds (to miaelrevaluation period for price impacts) is
predicted by a battery of explanatory variableduding short-term price history and the quote
deviation from the midpoint. Option and delta-atiasstock price changes are taken for 12 five-
second snapshots to accommodate the most receatdymamics. The quote deviation from the
midpoint is represented by the difference betwdmndquoted ask price and the average quote
midpoint across all exchandest can also be considered as a measure of thadbidpread. If
the ask price is close to (far from) the midpoihgn the ask price is likely to increase (decrease)
converging to its average. These are arguably th& important variables spanning the available
public information F;; however, other variables may potentially improve the predictability.
Because the price impact decomposition only uselasges that quote NBBO prices at the time

of trade, the regression for the expected quotagdmapplies the same filter.
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The regression is estimated separately for eadhk stied six absolute delta (0.40 and 0.60

cut-offs) and time-to-expiration (70 days cut-dffjps for bid and askThe average coefficients
across all days within each bin are then usedriedliption.
Table A4 reports average regression coefficientssscall stocks for the five-second time

horizon® Changes in the option quote prices are highlyiptabdle with R-square of about 4%,

! For the bid price, the difference is reversed, thee BBO mean minus the bid prigg?° — pf_i.

2 As price dynamics on each day is relatively inaetemt, this methodology simplifies the computatbi-

statistics and spotting outliers.

% The regression coefficients for 10 second and dutei horizons are not reported to save space andea
approximated by multiplying the 5-second coeffitseby 1.7 and 5.5 respectively.
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and the coefficient signs go in the expected dactThe quote deviation is negative as bid and
ask prices converge to their average distance fhenmidpoint. Consistent with Muravyeyv, et al.
(2013), the option market lags slightly behind thelerlyhg stock; and option price is mean-
reverting e.g. because of aggressive limit ordEng intercept is positive for the ask price and
negative for the bid because if a market makerrsady quoting NBBO price, there is little
room for improving it. All the estimates are higlgtatistically significant and do not vary much
across moneyness and time to expiration.

In the next step, the same regression covariaees@nputed immediately before each
option trade and are multiplied by correspondirngression coefficients to compute the expected
guote changes. Table 2 summarizes the average tegpguote changes for each stock after
adjusting for trade direction. Quotes are expetethange in the trade direction by 0.08%. Thus
failing to account for the expected quote changeslavoverstate the information price impact at
0.3% instead of 0.22%. Inventory-risk impact wiillse larger the information impact in this
case. The expected change estimates are positiwvéoy stock in the sample and range from
0.04% for America Online to 0.13% for QQQQ NasdddrE

Overall, the intraday dynamics of option quotes is highly predictable; the effect of this

predictability on price impacts is significant ameled to be accounted for.

A.3. Price discreteness

This section shows that price discreetness doesffestt the estimates of the inventory-
risk and asymmetric-information price impacts botraduces significant skewness in their
sample distributions. This skewness is createdusecguoted prices do not change in response
to most trades if the tick size is large. Becausthe skewness, the price impact components
should be estimated as an average (and not asianpeder large number of trades.

In practice, prices must take value from a discggie with a fixed step (tick size). For
example, the US equity market has a tick size pérany, and thus a price of $10.005 cannot be
guoted. During the sample period, the tick sizé& isents for options with price below three
dollars and 10 cents above that price. This tizk & large compared to an average option price
of 1.5 dollars.

A large literature studies how market-makers seirtuotes in a market with discrete



prices? Most theories imply that market makers will wickbe quoted bid-ask spread by quoting
the nearest above price on the grid for the astepand the nearest lower price for the bid (i.e.,
nearest to market-maker’s internal bid and ask}. &@mple, if an option market-maker has
internal bid/ask prices of 1.38/1.41, she will qudt35/1.45 because of a five-cent tick size.
Following Hasbrouck (1999), this intuition can hersnarized in the following equations. Af
and B; are the bid and ask prices market-maker would eqifoprices were continuous, and
{K,2K, 3K, ...} is the grid of allowed prices, whekgis tick size, then the observed bid and ask
prices projected on the grid are:

A, = Ceiling (%) «K; B(t) = Floor (%) « K (A2)

| follow this simple approach to introduce pricesaeetness in the baseline model of
Section 3.2.

Price discreetness has a minor effect on most sticrcture methodsowever, Harris
(1990) and Dravid (1991) show that it may affeocktreturns and volatility. Therefore, its effect
on the price impact decomposition should be studiedstimate this effect by conducting
numeric simulations with parameters set to matehdtatistics of my option sample. In each
iteration, a trade arrives and quote prices atrdi@ing and non-trading exchanges respond to it,
the response includes information and inventorgepmpacts and the error term as in Eq. (7-7).
These internal prices before and after the tradepasjected on the discrete grid of observed
prices following Eq. (A2). | then estimate the gricmpact components for each simulated trade
as if these discrete prices were actual data. Timelbadual estimates are then averaged over a
large number of simulated trades to produce fissilhates for the price impact components.
These estimates can be then compared to theivéilues of information and inventory impacts
(which are known in the simulation) to confirm tipaice discreetness indeed does not introduces
any bias.

Specifically, the simulation procedure follows seat Section 3.1 and considers the
simplest case with one non-trading and one tragxahanges quoting the same ask price, no
endogeneity between prices and trades and pricaci®mpre computed in dollar rather than
relative terms. These features can be easily atddedhe distributions then will have both

discrete and continuous parts, which make themitgsgive. In each iteration, quoted prices

* Hasbrouck (1999), Kandel and Marx (1997), Choatid Subrahmanyam (1995), Glosten (1994) amongsther
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respond to a single buy trade. Two market-makeve liae same before-trade internal ask price
Dotr = Pon-tr» Which is chosen at random to match the distrdsutf option prices in the data.
The observed pricg, - is discrete and is computed according to equdf@) with tick size of
five cents (options tick size}, ., = Discry o5(pg ). Following Eq. (7-7°), the after-trade ask
prices are computed as
Ditr = Dotr + INfPI + INVPI + €15 + €y (A3)
for the trading exchange, and
Pin-tr = Pon—er + INfPI + €y (A3)
for the non-trading exchange, where the price itgpaad error terms are set to match
summary statistics of the data (Table 1), the @mone is assumed to be normally distributed.
These internal price responses are projected odiskeste grid of observed prices:

Aper = Pitr — Poer = Discr0.05(p8 + InfPl + InvPl + €15 + Elnv) — Discroos5(py) (A4)

App_tr = Pin—tr — Pon—tr = Discr0.05(p3 + InfPIl + 6lnf) — Discr o5(pg)
Then the information and inventory impacts for tfi¢rade can be computed following Eq. (2)
as InfPl, = Appon—¢ri and IvPl; = Apy; — Appon—tri- As implied by Eq. (9-10) final
estimates of the two price impacts are computedaasrage over all trades/iterations
InfPlpier = E(InfPI,) and can be then compared to the true vaiyf@].

These simulations show that price discreetness nloieaffect the estimated price impact
components if the number of trades is sufficierdsge. | simulate the system for different
parameter values, and the estimates of price impamnhputed from simulated discrete prices
always match perfectly their true values. The tnduai is that price discreetness simply adds
another source of noise which is averaged outsuffeciently large sample.

However, price discreetness of course affectslisteibution of individual price impacts
by introducing significant skewness in it. If pricare continuous, information and inventory
price impacts for individual trades have a symroatrand continuous distribution (Panel A of
Figure A1)° Thus, in this frictionless case, both the mean #edmedian produce the correct
information and inventory impacts of 0.2 and 0.Atsaespectively. However, after a five-cent

tick size is introduced in Panel B, individual grienpacts can only take values from the (... -10,

® The information and inventory price impacts areteénfPI = 0.2 andInvPI = 0.4 cents to match my sample of
option tradese s ;~N (0, 1.42), €/ny,;~N(0,2.4%), Corr(€pms, €mmy) = 0.
® Importantly, public information erraris assumed normal (symmetric) in Eq. (A3)
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-5, 0, 5, 10 ...) cent grid as implied by Eqg. (AdheTaverage is unchanged and estimates the
correct price impacts of 0.2 and 0.4 cents. Butrtieglian becomes zero because it must lie on
the price grid. The distribution for the actual iopttrade data (Panel C) is surprisingly close to

the simulated one (Panel B). Thus, price discesstrand my simulation procedure indeed

capture key features of the options data. The wi® of distributions have the same means and
variances, but the actual data has fatter tailbgper because public information shocks have
fatter tails than is implied by the normal disttilon used in simulations. Panel C is based on a
part of my main sample, where exactly two exchargeste the trade price, and the expected

changes in price are set to zero.

The median over individual information impacts iegative (-0.03%) in summary
statistics in Table 1 because positive expectedgds (0.03%) are subtracted from the median
price response of non-trading exchanges, whiclelis.ZI'he distribution of expected changes is
continuous and approximately symmetric in the data.

Overall, as for most other microstructure methquge discreetness does not introduce a

bias in the price impact decomposition estimates.

A.4. Trade sign classification

The data do not specify whether a given optionetiadnitiated by a buyer or a seller, as
a result trade direction is inferred from a comgami of trade price with quoted prices. The
potential concern is that trade sign is misestichébe some trades.

This concern has been extensively studied in threasiructure literature because many
popular microstructure methods (such as PIN) relytrade direction, and the direction is not
reported in standard databases such as TAQ. Ouldeits- (2000) among many others shows
that standard methods such as Lee-Ready and the qule classify correctly about 85% of
stock trades. The results are similar for the aptimarket: Savickas and Wilson (2003) show
that the quote rule signs correctly 83% of opticadés. As a result, the sign misclassification
usually introduces a modest downward bias in pestimates (similar to other types of
estimation error) but does not affect main condusi For example, Boehmer et al. (2007) show
that if all trades were classified correctly stédk would be 18% higher (i.e., 17.6% instead of
13.6%); however, this correction does not alter any conclusions in the original PIN paper.

Although the literature suggests that the erroestimating trade sign is usually not

important, this error still may affect the price patt decomposition. By design, the
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decomposition is applied to a subsample of allayptirades for which misclassifying trade
direction is highly unlikely. Specifically, in my am sample, a trade is classified as a buy itgi) i
price equals to the national best ask price andtiiis best ask is quoted by at least two
exchanges including the one that reports the triade hard to imagine a scenario where a trade
that satisfies these two conditions is a sell mdtef a buy. For example, such a seller-initiated
trade would violate the price-time priory enfora@dmost exchanges. Specifically, this sell trade
is executed ahead of at least one sell limit oedeéhe same exchange that offers the same price
but has been submitted prior to it (also, at least sell limit orders at other exchanges offers the
same price). This is a clear violation of the tipr@rity (the price is the same). Supporting the
idea that misclassification is rare for such tradedders-White (2000) and Ellis et al. (2000)
show that most of the 15% misclassification ernorthe stock market comes from trades
executed inside the quotes. Indeed, it is hardatp whether a trade executed at the quote
midpoint is a buy or a sell. Thus, for trades exed\at either best bid or ask, the classification
error is in the single digits. Extrapolating thessults to my sample where at least two
exchanges quote the trade price — the misclagsificeate must be even lower.

Finally, I quantify the effect of trade sign misesication on the inventory-risk and
asymmetric-information components within the théoed framework of Section 3.2. In short,
the ratio of the two components is unaffected kg hisclassification, but the estimates will
underestimate the true magnitude by about twicecthssification error. E.g., if the sign is
misclassified for 10% of trades, the estimated mwry impact will be 20% lower than the true
value. Thus if anything, trade misclassificationkesit harder to find significant price impacts.
To show this result, consider first an extreme cadeere the direction of all trades is
misclassified, then the estimated inventory-riskpact will be simply the opposite of the true
value: InvPI = —InvPI. This is implied by Eq. (10) where the differerioeprice responses is
multiplied by buy-sell indicator — the difference ¢orrect but the buy-sell indicator is wrong
(e.g., -1 instead of 1 for buy§)More generally, if trade direction is misclasstfitor 10% of
trades, then considering separately the subsangdleorrectly classified and misclassified
trades, the estimated price impact will besPI = 0.9 * InvPI — 0.1 * InvPI = 0.8 * InvPI,

" Equations (4) and (4’) show that bid and ask priveve together. Equation (@) X = E[IiBS- (Apff_ -
E(Ayt|Ft))] then implies that if a buy is misclassified aeh s.e.,I?* = —1 instead ofl, then information impact
is—6 - X isinstead ob - X.



the true impact is indeed underestimated by twheeerror rate. Eq. (9) implies a similar result
for the information price impactnfPI = 0.9 = InfPI — 0.1 x InfPI = 0.8 * InfPI. Hence, the
ratio between the two impacts is not affected lgyrthisclassification error.

Overall, the method is designed to minimize thereim classifying trade direction. It is

unlikely to affect paper’s conclusions and if angthwould strengthen them.

A.5. Is there “hot potato” trading in options?

This section confirms empirically that option markeakers do not commonly share
inventory after a client trade; thus, validating one of the method’s assumptions. The method
assumes that market-makers do not regularly shasnfory positions directly with each other.
If they do, the price response from the non-tradimayket-makers cannot be attributed only to
asymmetric information because they not only ledyaut the trade but also anticipate getting a
chunk of it from the trading market-maker. In thisse, the method will overstate the
asymmetric-information impact and underestimate ithventory-risk impact. For example, if
there are only two market-makers and the tradinketanaker shares half of the trade size with
the non-trading market-maker immediately after aletr then Eq. (A5) and (A6) imply the
identical price response for both market-makersusThthe method implies zero instead of
positive inventory impact in this example.

Apy = E(QuelF) + 6(X = ECee F)) +¥ - X + €rsn + (Ofar — OF) (AS)
Apgi- = E(Ape|Fp) + 9(X - E(xtlFt)) +vY -0+ €rn + Oa — 98), (A6)

Market-makers may want to share large trades taceednventory risk. Ho and Stoll
(1983) show this theoretically, while Reiss and Wéer(1998) as well as Lyons (1996) report
empirical evidence from the equity and foreign exuale markets based on data from early
nineties. More recently, the role of dealers isidishing in both markets, so interdealer trading
is less prevalent now. In the options market, ntankakers are the main liquidity providers, so
hot potato trading could potentially be importamre®

If hot potato trading is common in options, thery (@Bnalogy with Lyons, 1996)

8 For example, Jameson and Wilhelm (1992) basedaswial observation of trading activity on the excefloor”
claim that sharing of the incoming orders was comramong CBOE market-makers in mid-80s. Howevery the
don’t provide any further evidence for the claim.



immediately after each client transaction, market-makers iniliate a sequence of back-to-
back smaller trades in the same option contracedistribute the incoming trade. Moreover,
inventory sharing should be more prevalent aftageldrades. However, the trade sequences can
be produced for many other reasons, for this redsminpotato trading is hard to identify
empirically. For example, investors may split ag&arorder into smaller pieces, or they can
respond to the same news.

Thus, if the options data contain a lot trade segas, it may or may not indicate hot-
potato trading; but if the trade sequences are rare even after lamegkes, then the inventory
sharing between market makers is rare too. Thesigport the later alternative.

Table Al reports the number of trades in the saptien contract in one-minute interval
around a trade for both the entire sample as wgelbaone percent of largest trades. Hot-potato
trading would trigger a lot of trading activity esyally for large orders. However, most trades
(59%) have no other trades around them. Importattdge sequences are no more likely after
the largest trades. Even for 9% of trades with ntbaa five other trades near them (it will take
five trades to fully share a trade between six arges in my sample), it’s likely that most of
them are not interdealer trades. Also, this nungibessly overestimates the relative frequency of
large trade sequences as each sequence is comadoo every trade it contains. Importantly,
the sample contains a complete set of trades fwem option including all potential interdealer
trades. According to exchange rules fiercely priete by the SEC, all option trades must be
exposed to the public through option exchanges mgaki's hard for market-makers to
internalize trades.

Overall, hot-potato trading is not common in thé@ps market.

A.6. Are prices at all exchanges equal?

The price impact decomposition identifies the irteey impact by taking the difference
between price responses of the trading and nomgaekchanges. Therefore, it is important to
explain why price quotes from different market-makand exchanges mean the same thing. To
illustrate this concern, imagine that one exchaageounts for all the price discovery and
trading, while other exchanges simply follow it.aths, other exchanges are a side show with

little trading. This used to be the case in theitggmarket when NYSE dominated it while

° Major option market-makers are completely eledtr@ince early 2000s, so “hot potato” trading mstwired in
their computer algorithms.



regional exchanges were a side show.

Option prices from all exchanges mean the sameythectause (like equities) all US
exchange-traded equity options are centrally cttar®ption Clearing Corp. (OCC) is
counterparty on all option trades since 1973. Sécaluring my sample period, all option
exchanges had similar market structure (SEC Rep0@t7) dominated by electronic trading and
characterized by “payment for order flow.” Obviously, the exchanges are not totally identical; for
example, there are some differences in technologlyfaes. Third, a dozen of market-makers
dominate the option liquidity provision and use ifmalgorithms® For each option class, each
exchange assigns a different lead market-maker.ekample, Citadel makes the market in
Google options at ISE while Susquehanna does th@B®OE and vice versa for options on
Yahoo!! Competition is high between the option exchan@&sC (2007) reports that for the
entire option universe at least four exchangeseajtioeé best bid price during about 78% of a
trading day? Finally, given these observations it is not swipg that all option exchanges
participate in option price discovery: Simaan and \(2007) show that the Hasbrouck
information share ranges from 8% for PHLX to 17.8%ISE in January 2002.

For robustness, | confirm that the main results rase driven by trades from a single
options exchange. First, market share is not cdretex at a single exchange: about one third of
all trades in the sample are executed at ISE (3#8hdwed by CBOE (27%), PHLX (12%), and
Pacific (11%) as reported in Table A2. These nusibaatch closely the overall market shares of
option exchanges based on the entire equity optionserse. Second, | compute the
asymmetric-information and inventory-risk comporsefdr subsamples where trades from a
given option exchange are excluded from the maimpéa The information impact ranges from
0.17% to 0.23%, while the inventory-risk impactiearfrom 0.38% to 0.45%.

Overall, although price impacts vary by exchanges variation does not alter the main

conclusions of the paper.

A.7. Outliers

Although my sample size is large, outliers canl gifesent a problem if there are

19 For example, in 2004, the list of lead option negnakers include Citadel, Citigroup, Credit Sujs3eutsche
Bank, Knight, Morgan Stanley, SLK-Hull (later becaypart of Goldman Sachs), Susquehanna, TimberBE
and Wolverine Trading.

M For example, in its letter to SEC in 2005, Citalfetivatives describes itself as “an options markeker, active
on all six options exchanges, including acting apecialist on the ISE, CBOE and PCX.”

12 hitp://www.sec.gov/news/studies/2007/optionsroutpgrt. pdf
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sufficiently many of them. This section shows tloatliers have a negligible effect on the
estimates of the information and inventory compdserported in the paper. Also, the most
extreme outliers have been already removed fronmthi@ sample. As discussed in Section 4.2,
a trade is removed from the main sample if the lalbswalue of at least one of the price impact
components is greater than 50% for it. Table A3orepthe estimates for information and
inventory components removing outliers based ondifferent values for this threshold. The
threshold ranges from the case of no threshold dwwthe threshold of 30%. Without the
threshold no observations are removed, and thenmation and inventory components are
0.217% and 0.446% respectively. For the threshbl8086, 152 observations are dropped and
the price impacts decrease to 0.216% and 0.414%helfthreshold is lowered to 30%, 4861
trades are dropped and the components decreas2l29® and 0.40%. The estimates decrease
slightly because some of the dropped observaticere false positive (not outliers) particularly
for lower threshold values, some trades do hawaege price impact.

Overall, outliers have an insignificant impact dre tprice impact components in my

sample.

A.8. Information impact for stocks vs. ETFs

The price impact decomposition is similar to otlmeethods in that it estimates the
information content of trades but is silent aboutatvkind of information stands behind it.
However, a comparison between the information pimgeacts for ETFs and individual stocks
may shed some light on this important question. §draple includes four ETFs on stock indices,
which account for about one-fifth of all optiondes. As can be inferred from Table 2, a trade in
option on ETF has information impact of 0.15%, whis below the impact for individual stocks
(0.23%); and inventory impact of 0.40%, which is similar to stocks (0.42%). Inventory risk
works similarly for ETFs and individual stocks. Hever, ETFs and stocks may differ in the type
of private information, particularly for options.o@sider first the equity market, prices and
weights of ETF constituents are known and the meatdemption mechanism insures that ETF
price stays close to its value. Since getting peivadustry-wide information is perhaps harder
than private stock-specific information, less imhed trading is expected in ETFs. Consistent
with this idea, Table 2 shows that option tradegehiarge impact on the underlying price for
stocks but almost no impact for ETFs (0.022 vsO8.per trade). l.e., option trades contain little

new information about the ETF price level.
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However, moving to the options market, options drFEand options on its constituents
are not linked as tightly. ETF option is an optmma basket of stocks. Thus, ETF option price
depends on (i) constituents’ prices, (ii) theiratdities (can be inferred from their options)j)(ii
the correlation between constituents’ prices (Inisé estimates are noisy) and finally (iv) an
option pricing model that aggregates these compendius, trades in ETF options could be
informed because some investors have superiommaon about the model inputs (such as the
correlation), or simply have a better option pricmodel. According to this intuition, reasonable
amount of informed trading in ETF options is expéecbut perhaps less than in individual stock
options, which is what | found in my sample.

Finally, my conclusions here should be taken wahton as the number of ETFs in the

sample is small and the argument is based on dermrsiderations, not a rigorous model.

A.9. Alternative channels for return predictability in instrumental variables approach

What is a channel through which past order flowdpmts future returns? This section
shows that order imbalance predicts future retpmeslominantly through its ability to predict
future order imbalances. Thus, most of the predioreler imbalances can be attributed to future
inventory shocks.

Order imbalance can affect option returns throwah alternative channels. Chordia and
Subrahmanyam (2004) advocate the inventory-riskiobla Their model implies that the order
imbalance on datt1 helps to predict the order imbalance on the naxttavhich in turn moves
option prices on the same dayThe alternative channel is informed trading adwed by Ni,
Pan and Poteshman (2008). They find that optiatetsahave private information about future
stock volatility. Thus, order imbalance can predidtre stock volatility which in turn directly
transmits into future option returns. However, kaldata in Ni et al. (2008), the ISE order flow
data are public and thus create little potentiaifiormed trading.

| adjust an instrumental variables approach to @mphe two channels and show that
the inventory-risk channel dominates the informedling channel. In the first stage of 2-SLS,
current order imbalances and volatility are insteated with their past values. In the second
stage, day option returns are regressed on the predicted deder imbalances and volatility. If
the inventory channel dominates the informationncled, then the instrumented volatility will
have small or no predictive power on returns.

I choose the same measures of dagrder imbalance as before: market-wide and

12



individual imbalances. Stock volatility is measurad two complementary ways. The first
measure is absolute stock return. However, vdlatihiay vary widely across stocks and in time
(ARCH effects). The second measure tries to accdontthese two features. An adjusted
absolute return is computed as an absolute statknrenormalized by its 20-day moving
average. It measures how high current volatilityretative to the recent past. In addition,
regression coefficients for this measure are easieinterpret. Overall, the two measures
complement each other. | use six instruments: fagarket-wide order imbalance, two lags of
individual imbalance, lag of order imbalance forodkterm options as well as lag of two
volatility measures: absolute stock return andatthested absolute return.

The first half of Table A6 reports the first staige the 2-SLS regressions. As have been
discussed already, current and future order imlocata@are positively correlated. Next, | confirm
the results of Ni et al. (2008) that order imbakspredict future stock volatility. However, this
predictability is not necessary driven by informeatling. In particular, market-wide imbalance
is the most significant predictor of future voleyil but market-wide variables are unlikely to be
affected by informed trading. It is hard to obtpivate information about the entire market. The
alternative explanation for the order flow prediiki#y of volatility is that the econometric
model does not account for information about futuoéatility that the market already knows.
Investors hedge or speculate by buying options thod, create order imbalance before an
expected future event which causes a volatilitkespi

The last four columns of Table A6 report the secetaje of 2-SLS. The regression in
Column 6 estimates the sensitivity of option retuta the same-day order imbalance and a
coefficient of 0.078 means that the order imbalaot&€5%, which equals to one standard
deviation, corresponds to option returns of abdt Zhe next column adds the market-wide
order imbalance and the coefficient drops by hadidating that the market-wide imbalance is at
least as important as individual imbalance.

In the last two columns, | conduct a horse racevéen the inventory-risk and volatility

channels for the return predictability. Both futwaatility and order imbalance are instrumented

13 For example, economic releases such as GDP ane adsociated with high volatility. The timing bktreleases
is known many days in advance to all market pardicts but is not known to the econometrician whiesenly on

history of prices and volumes. In anticipation b€ trelease, some investors adjust their portfaidédge or
speculate. Usually, such trades are correlatedtladcreate order imbalance. This imbalance isrobseby the

econometrician who concludes that the imbalancdigiee future volatility. However, in this exampliere is no
informed trading since information is common toiallestors.
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and placed in the same regression. Both measureslatility are insignificant if measures of
order imbalance are included. At the same time ctiedfficient estimates for order imbalances
are unchanged. This result indicates that pastrandealance predicts future returns through
future order imbalance rather than through futtoelsvolatility. It provides further support for
the important role that inventory risk plays inioptpricing.

Another concern is that individual order imbalancestain some private option-specific
information that becomes known to the market amadlzed in option returns only on subsequent
days. The effect of this channel is likely to beainfior two reasons. First, dayl individual
order imbalance becomes public information by the @f that same day. Subscribers to the ISE
open/close data receive updated estimates of tter dmbalance every ten minutésEven
without special data products from ISE and CBOEE, dhder imbalance can be estimated from
the public tick-level data broadcasted by OPRA @alrtime. Second, the effect of private
information embedded in the lagged order imbalasiceuld remain significant even after
controlling for future order imbalances. However,untabulated results, |1 show that this is not
the case. The coefficient for d&yl individual order imbalance decreases from 0.008.692
and becomes economically insignificenif day t order imbalance is included in the return
regressiort® This result indicates that individual imbalancedbicts future returns predominantly
through future individual imbalance and thus, idikely to be driven by private information.
This result also confirms one of the main testsgssted by the Chordia and Subrahmanyam
(2004) model. The result is consistent with Barteal. (2009) who find that the trading of retail

stock investors is highly correlated and persistent

A.10. Other predictors of future option returns

Although the paper’s primary attention is on thekIbetween returns and order flow, this
section discusses other significant predictors mifon returns. These variables generally have
smaller predictive ability than past order imbaksc

The battery of controls includes about fifty vated) many of which have not previously
been considered in the literature. Table A7 reptttsmost significant control variables in the
regression from Eq. (16). Column 3 reports coedfitiestimates for the whole sample, while

other columns examine particular subsamples. Colimeports the results for the subsample of

14 Seehttp://www.ise.com/market-data/products/put-caliadiae-open-close-trade-profile-intraday/
15 A coefficient of 0.002 times standard deviatiorO corresponds to a 0.06% changes in optionmgtur
18 The regression option returns on day explanatory variables and order imbalances fiagt-1.
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two hundred stocks with most liquid options. Columstudies a subsample of options with call
and put bid prices exceeding 2 dollars. Column gonts results for two-day-ahead returns.
These three subsamples aim to examine how marketosiiucture influences the return
predictability. Finally, the last column reportsivariate regressions of option returns on a single
variable and an intercept.

OptRet; =a, +a,0rdimb,,; + a,MWOrdIimb , + ' OtherPredctors; +¢,; (16)

Even among the variables reported in the table, desveconomically significant and
stable across model specifications. In additioness variables are significant if all controls are
included but become insignificant in univariateresgions.

Absolute stock return is a good predictor of nexy-cbption returns. One standard
deviation change in this variable increases retbyn8.39%’ That is, option prices “underreact”
to changes in instantaneous volatility. PoteshnZ2001) finds a similar result for S&P index
options. He documents that S&P index options umdetr to unexpected changes in
instantaneous volatility estimated from a stocleagbilatility model. Specifically, he estimates a
regression of a difference between changes inntestaous volatility for long-term and short-
term options on unexpected changes in instantanealaslity. The coefficient is negative but
insignificant. Poteshman interprets his findingeaslence of investor irrationality. Investors put
too much weight on the prior beliefs and do notaipdhem properly. My paper differs from
Poteshman (2001) in several ways. My methodologyess sophisticated, as returns are
computed directly instead of relying on a speaifiedel. Consequently, the economic magnitude
is easier to estimate with this approach. Finallystudy equity options while Poteshman
examines S&P index options.

Although it is tempting to blame investor irratidiba for this return predictability, |
suggest an alternative explanation. A large tigk $n the options market may be the reason why
option prices are “sticky” and unresponsive to $nthlanges in volatility. To support this
microstructure hypothesis in unreported resultshdw that the coefficient for absolute returns
becomes virtually zero after November 1, 2009 (Balruary 2010). At that time, the majority
of stocks were added to the penny pilot prograrhré@duced the options tick size from 5 cents to
a penny. At the same time, the coefficient for phevious year starting on November 1, 2008 is

as big as for the full sample. This difference-ifiedence result favors the microstructure

7 A related factor is median stock volume whichigmiicant only when absolute return is omitted.
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explanation. In addition, the predictive ability absolute return is much smaller for subsamples
of liquid options and options with large price.

Another variable with significant predictive powesr one-day change in ATM implied
volatility. If implied volatility increases by ongtandard deviation (4%), option returns become
lower by 0.39% on the next day. The “bid-ask midpdiounce” can explain this predictability.
To illustrate the mechanism, consider a stylizeahaple. If the option bid price is set abnormally
low, the quote midpoint will also be low which tedates into low implied volatility. The bid
price and implied volatility revert to the normal levels on the next day; and positive option
returns are recorded on this day because retumsanputed based on the quote midpoints.
However, no abnormal returns will be recorded & #sk price is used instead of the midpoint in
this example. Thus, the decrease in implied vahatdn dayt-1 is reversed on daiy and is
mechanically related to the option returns on dayhe microstructure explanation is supported
by the fact that the predictability is much smalierthe subsample of the two hundred most
liquid stocks. Finally, there is no predictabillbgtween the change in implied volatility on day
1 and the option returns on dayl which is directly implied by the “midpoint bounce”
explanation.

Everything said about the change in implied vatgtépplies to the implied volatility as
a predictor. It is also likely driven by microsttuce reasons because its predictive ability
disappears if day+1 returns instead of dayreturns are predicted. Predictive ability of lagige
option returns is also mainly driven by the markeicrostructure. Surprisingly, it is not
significant in the individual regression.

Jones and Shemesh (2010) show that option retuenstmormally negative over the
weekend (Friday to Monday close). Confirming thigmdings, | also find that the weekend
returns are lower by 1.3% than on weekdays, wiidomewhat lower in magnitude than a
-1.8% return found by Jones and Shemesh. The batkptage point difference can be partially
explained by the difference in sample periods. Sarel Shemesh use data from 1996 to 2007
and find in their Table 9 that the weekend effemtdmes much weaker towards the end of this
period; while my sample period starts in 2005. The economichaweism for the weekend effect
is not clear; however, it can be partially driven by microstructure effec&irst, option bid-ask
spread decreased sharply after the launch of 1SB04, so did the weekend effect. Second, the

weekend effect is much weaker for the subset ofonptwith price above 2 dollars and
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completely disappears if the expiration weekendexzluded from this option set. Also
surprisingly, the weekend effect is much smalldsioie of the expiration weekend in my sample
but not in theirs. In untabulated results, | shdwattexcept for the expiration period, order
imbalance exhibits little day-of-week seasonalltyus, order flow is not responsible for day-of-
week seasonality in option returns. Overall, thekend effect is a particularly intriguing market
anomaly that requires more academic research vends economic mechanism.

Boes et al. (2007) show that close-to-open junmpispriced for S&P index options. The
idea is that stocks for which most of the volatilitappens during non-trading hotirshould
have more negative option returns to compensatstors who are short gamma for inability to
hedge during non-trading hours. | find similar rigkemium for equity options. Stocks with
higher close-to-open volatility relative to closedose volatility produce more negative option
returns in the future. The economic magnitude gafiem -0.1% per day for the full sample
to -0.3% for the subsample of the two hundred rigsid stocks.

The fact that my results are generally consisteith wther theories reported in the
literature indicates that my specification is rewdde. Overall, the examination of other
explanatory variables is consistent with the cosiolu about order imbalance being a major

predictor of future option returns.

A.11. Robustness tests for return predictability

This section confirms that the result that paseoiftbw predicts future returns is robust
to changes in methodology and different subsamples.order imbalance from d&y predicts
option returns on the next dgybut can it predict returns two days ahead ont#ld¢ Column 3
of Table A8 shows that it indeed can. Moreover, dbefficients are very similar to the baseline
case reported in Column 2. Column 4 reports redattshe dayt+4 returns (one week ahead).
For this case, the market-wide imbalance remaimhlyisignificant, while the individual
imbalance has smaller magnitude. One standard ta@vizhange in the predicted order
imbalance corresponds to a 0.6% return on teldyand a 0.5% return on day4, which is
smaller than 1% for daibut is still large. Thus, the returns are highigdictable for several
days in the future. The results are robust to tag @ption returns are computed. Column 5 uses

delta-neutral call returns instead of delta-neustshddle returns and finds little change in

18 Specifically, | look at the difference betweensgeto-open volatility and time-scaled standard tiliiia The time
scaling is done to make the mean of the variabpeceqmately zero.
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coefficient estimates. My sample includes all egoiptions with at least some trading activity
listed on ISE with a maximum of 1911 stocks on\gegiday. Many of these stocks have illiquid
options with only few trades per day. A potenti@hcern is that stocks with illiquid options drive
the return predictability. | test this hypothesis the subsample of the 200 stocks with most
liquid options based on volume in the previous @80s. Column 6 shows that the predictability
for stocks with liquid options is very close to thaseline case.

The last column in Table A8 reports the most imgatrrobustness check. Inventory risk
is higher during periods of market stress suchras€ial crises as market-makers are more risk-
averse, and markets are more volatile. Indeed,rondiealance has a higher impact on option
prices during crises. | study the interaction bemverder imbalance and the crisis dummy
variable which is set to one for the period Aug2@d7-January 2009. The results are similar if
VIX is employed instead of the dummy variable. Tast column in Table A8 reports that the
crisis dummy is mechanically positively related dption returns because market volatility
increases during the crisis leading to positivaddte returns. The main coefficients of interest
are interaction terms between the crisis dummy withrket-wide and individual order
imbalances. Both coefficients are highly econontycalgnificant. For example, market-wide
order imbalance has almost two times bigger pmgeaict during the crisis compared to normal

time.
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B.1. Variable description

Name

Description

Computation

Option returns
OptRet(p=0)

OptRet, OptRet(p=1)

OptRetCall(p=1)
OptRet(p=3)
Order imbalance
Ordimb
OrdIimb(p=1)
Ordimb.;
OrdimbPut
MWOrdIimb
AdjOrdImb
Dummy variables
n_1

n0

neadO

neadl
Weekend

n_crises

Stock market

Straddle returns for expiring optiohg € 13)
Straddle returns for short-teptions

Call option returns for short-teoptions
Straddle returns for long-term options

Order imbalance
Order imbalance for short-term options

Order imbalance on the previous day

Order imbalance for put options
Market-wide order imbalance
Volume-adjusted order imbalance

Expiration day (Friday)

Post-expiration day (Monday)

Pre-earnings announcement day (pre-EAD)
Earnings announcement day (EAD)
Weekend dummy

Crisis dummy

StkRet Stock returns

AbsStkRet Absolute stock returns

RelAbsStkRet Absqlute stock returns normalized by its averager dhve
previous 50 days

Log(Open/Closg) Close-to-open ratio

Log(High/Low) High-low ratio

High-low ratio normalized by its average over the

RelLog(High/Low) previous 50 days

StkPrice Close stock price
logME Logarithm of market capitalization
StkVvol Stock volume in dollars

MeanStkVolume

Stock volume in dollars, a 75-day imgwmedian

Momentum Stock price relative to its 250-day movingdian
StkRet1W One-week stock returns

StkRet1M One-month stock returns

StkRet6M Six-month stock returns

19

See equation (11)
See equation (11)
See equation (11)

See equation (12)
See equation (12)
See equatdn (
See egudl2)
See equati®) (
See aqudil2)

1, if t = expiration
1, if t-1 = expioat
t41if EAD
1,ift=EAD
1, if t = Friday

1, if August 1, 2007 < date <
Febuary 1, 2009

|StkRet]

log(Open/ Close;)
log(High / Low)

log(CloseMedianClos)
StdRet 250




Stock volatility
StdRet

COStdRet
HLStdRet

AbsStdRet

Stock returns volatility (based on a 50-day moving
average)

Close-to-open volatility (based on a 50-day moving
average)

High-low volatility (based on a 50-day nrgy average)

Absolute returns volatility (based on a 50-day mgyi
average)

Implied volatility/options market

V30
V60

IV60d25
IV360
IV360d25
IV(p=1)
diff(1V)

IV30 - V30,
IV30 - V30,5

IV30 - IV30;.25
Skew60

RNWolatility
RNSkewness
RNKurtosis
IV6O - 1V360

IV60-StdRet
COStdRet-StdRet

VolCone(IV30)

IdiolV30

VIX

OptBidAsk
Option volume
OptVolumeUSD
OptVolume

MeanOIUSD

MeanOptVolumeUS
D

ATM implied volatility for 30-day options

ATM implied volatility for 60-day options

Implied volatility for 60-day put options with dalbf
-0.25

ATM implied volatility for one-year options

Implied volatility for one-year put options with Itk of
-0.25

Average implied volatility for short-ternptions
One-day change in short-term implied valigy
One-day change in implied volatility
One-week change in implied volatility
One-month change in implied volatility

\olatility skew for 60-day options

Risk neutral volatility as in Bakshi, Kapadia, aviddan
(2003), 50 days to expiration

Risk neutral skewness as in Bakshi, Kapadia, aadavi
(2003), 50 days to expiration

Risk neutral kurtosis as in Bakshi, Kapadia, andida
(2003), 50 days to expiration

\olatility time slope defined as the differenceveén
60-day and 360-day implied volatilities

\olatility premium defined as the difference betwee
60-day implied volatility and stock volatility

Close-to-open relative to closeldse volatility

\olatility cone, 30-day IV relative to its averageer
previous year

Idiosyncratic volatility proxy
CBOE VIX (S&P500 30-day implied volatility)
Average bid-ask spread for ATM shorttewptions

Option volume in dollars
Option volume measured in contracts

Logarithm of open interest, a 250-day img\average

Logarithm of option dollar volume, a 250-day moving
average
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Mean{ log(Close/ Closeg;)?}

\/Mean{log(Open[ /Closg_) %}

'%u ng\/ Mean{log( High/ Low) 2}
74 \[Mean (AbsSik Ret)

IV(p=1) - IV(p=1):1
IV30 - IV30
IV30 - IV30
IV30 - V39
log(IV&E!1V60)

See Bakshi et al. (2003)
See Bakshi et al. (2003)

See Bakshi et al. (2003)

IV60 - V360

IV60 - StdRet

2*COStdRet - StdRet

(IV30-Median(lIV30, 250-
days))/ (Range(1V30,250-

days)/1.349)
30-dayl¥/- VIX?



RelVolUsd (p=1)
RelOlICall(p=1)
RelOICalllTM(p=1)
RelOIPutOTM(p=1)
RelVolCall(p=1)

RelVolCallTM(p=1)
RelVolPutOTM
(p=1)

\Vol/Ol(p=1)

Dollar volume for short-term options relative ts it
520-day median

Open interest for short-term call options relatveotal
short-term open interest

Open interest for short-term ITM call options rélatto
total short-term open interest

Open interest for short-term OTM put options refatio
total short-term open interest

Volume for the short-term call options relativetatal
short-term volume

Volume for the short-term ITM call options relatitetotal
short-term volume

Volume for the short-term OTM put options relattee
total short-term volume

Volume relative to open interest forostiterm options

21

Log(OptVolUsd(p=1)) -
Median(LogOptVolUsd(p=1))

OlCall(p=1)/0Ol(p=1)
OlICalllTM(p=1)/Ol(p=1)
OIPUtOTM(p=1)/Ol(p=1)
OptVolCall(p=1)/Opt\Vol(p=1)
OptVolCall(p=1)/OptVol(p=1)

OptVolCall(p=1)/OptVol(p=1)
OptVol(p=1)/Ol(p=1)
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Figure Al. Price discreetness and price impact component$he effect of price discreetness on the
price impact components is simulated in Panelsd\Buand then compared to actual data in Panel C.
Each panel shows a distribution for each of the ivice impact components, based on price respdases
individual trades computed following Eq. (A3) a#l]. Panel A considers frictionless case with zero
tick size. Panel B sets tick size to five centstfi@r same sample of trades. Panel C show thetdititm

for the subsample of option trades with one tradind non-trading exchanges quoting the trade price.
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Table Al. Hot potato trading. For each trade, | compute the number of otheetrdd the same option
contract that are close in time to the trade. Tleguency for each number of trades is reported. For
example, 16% of trades have only one other tradebye The frequencies are computed for the full
sample as well as for one percent of largest tréaletvo time windows - one minute around and one
minute after a trade.

number of trades in -30 to 30 second window

0 1 2 3 4 5 >5
All trades 59% 16% 7% 4% 3% 2% 9%
Largest trades (1%) 56% 18% 8% 5% 3% 2% 8%

number of trades in 0 to 60 second window

0 1 2 3 4 5 >5
All trades 63% 15% 7% 4% 2% 2% 7%
Largest trades (1%) 61% 16% 7% 4% 3% 2% 6%

Table A2. Price impacts by trading exchangeThe table reports percentage of option tradesutedc

by each option exchange. It also reports the asyriorieformation and inventory-risk components of
price impact if all the trades from a given exchaage excluded from the main sample. BOX lunched in
February 2004.

Share of Asymmetric Inventory
Exchange Trades Information, % Risk, %
ISE 34.2% 0.21 0.41
CBOE 26.6% 0.23 0.45
PHLX 12.4% 0.22 0.45
Pacific 10.9% 0.23 0.38
BOX* 9.9% 0.17 0.38
AMEX 6.0% 0.23 0.41
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Table A3. Ouitliers. The table reports the number of trade observatiemeved for each threshold value
and the estimates of the asymmetric-informationiawentory-risk price impacts after the outliers ar
removed. A trade is classified as an outlier ifahsolute value of at least one of the two pricesaot
components exceeds the threshold (e.g., 50%).

# of Outliers Information Inventory Risk

Threshold, % Removed Impact, % Impact, %
30 4,861 0.212 0.400
40 2,197 0.215 0.407
50 498 0.216 0.413
60 298 0.216 0.413
70 193 0.216 0.413
80 152 0.216 0.414
n/a 0 0.217 0.446
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Table A4. Expected changes in the option bid (ask) pri@stimate a regression of five-second changes inroptd (ask) quote on
the lagged changes in option bid (ask) price ati-@eljusted stock quote midpoint.
12 12

BBO
Apli = ag + ar (Pl — e )+ Z U1 AP pae + Z n13(Dr—nae * ASt_pae) + €

n=1 n=1

where(utBBO — Dti ) is average quote midpoint across all exchanges srtimel current exchange bid (ask) price. The laggexe
changes are based on twelve regularly spaced dwenrsl time intervals (only the first two and thstleoefficient are reported). The
regression is estimated separately for bid andpasies for each stock and six absolute delta (Bd @6 cut-offs) and time-to-
expiration (70 days cut-off) bins within eadfy; average coefficients and R? are reported. Only observations with quoted pecgial
to NBBO ask at time t are included. All quote chesmi@re measured in cents. All the coefficientsstadstically significant with a
minimum t-statistic of twelve.

Money- Time-to- Inter- BBO Stock price changes adjusted for

Changes in option quoted price

ness Expiration cept Deviation option delta R2
t-1 t-2 t-12 t-1 t-2 e 12

Bid OTM  short-term -0.016 -0.010 -0.119 -0.076 -0.015 0.198  0.093 0.020 0.036
long-term  -0.016 -0.009 -0.120 -0.076 -0.015 0.218 0.101 0.021 0.033

ATM  short-term -0.034 -0.022  -0.142 -0.096 -0.019 0.265  0.133 0.028 0.057
long-term  -0.032 -0.017  -0.131 -0.085 -0.018 0.262 0.125 0.026 0.042

ITM  short-term  -0.046 -0.029  -0.157 -0.107 -0.023 0.300 0.149 0.031 0.057
long-term  -0.044 -0.023  -0.138 -0.092 ... -0.020 0.275 0.133 ... 0.028 0.046

Ask OTM  short-term  0.016 -0.010 -0.120 -0.076 -0.015 0.194  0.091 0.019 0.036
long-term  0.017 -0.010 -0.121 -0.077 -0.015 0.219 0.102 0.021 0.034

ATM  short-term  0.037 -0.025 -0.142 -0.095 -0.020 0.265 0.131 0.028 0.056
long-term  0.033 -0.021  -0.132 -0.086 -0.018 0.264  0.126 0.026 0.042

ITM  short-term  0.048 -0.032 -0.156 -0.107 -0.022 0.299 0.150 0.030 0.057
long-term  0.046 -0.027 -0.145 -0.096 ... -0.020 0.283 0.138 ... 0.027 0.047
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Table A5 Average correlationsfor selected variables. Options are divided itar fdays-to-expiration groups. Ultra short-term=0}) with less
than 13 alendar days to expiration; short-term (“p=1") with on average 3@ays; mid-term (“p=2"") with no more than 150 days; and long-term
(“p=3") with more than 150 days. Option returns ptBet") are computed for a delta-neutral straddigfplio (long) based on the call-put pair
which is closest to at-the-money. Returns are tedoior the current (t) and next days (t+1). Thdeorimbalance is based on the difference
between the number of buy and sell trades nornthlizethe total number of trades on a given day ¢i@b”). “MWOrdIimb” are market-wide
order imbalances. “OptBidAsk” is the dollar optibid-ask spread for short-term options. “OptVolunige’bption volume measured in contracts.
“IV30” is 30-days-to-expiration implied volatility:Skew60” is a logarithm ratio of OTM to ATM implievolatilities for 60-days-to-expiration
options. “RNSkewness” is risk-neutral skewnessff{Dd)” is one day change in short-term implied atlity. “IV60 - StdRet” is the difference
between implied and historical volatilities. Otlvariables are defined in Section B of this intelagpendix.

1 OptRet, 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18
2 Ordimb 0.03

3 MWOrdimb 0.08 0.16

4  AbsStkRet 0.03 0.04 o0.07

5 Weekend -0.06 0.01 0.02 -0.04

6 StkRet 0.00 -0.06 -0.22 -0.01 0.00

7 OptRet -0.02 0.12 0.18| 0.48 -0.02 -0.10

8 Diff(IV) -0.04 0.12 0.19 0.04 -0.05 -0.34 041

9 StkRetlWeek -0.01 -0.06 -0.23 -0.07 0.00/ 0.44 -0.04 -0.13

10 1V30 0.03 0.05 0.22 0.26 -0.01 -0.13 0.12 0.13 -0.22

11 1V60-1vV360 0.01 0.03 0.12 0.31 -0.01 -0.07 0.07 0.10 -0.14 0.1

12 1V60-StdRet -0.01 0.03 0.12 -0.19 -0.01 -0.09 0.00 0.10 -0.13 0.00 -0.01

13 Skew60 0.00 -0.03 -0.07 -0.03 0.01 0.14 -0.02 -0.07 0.09 -0.12 -0.06 -0.17

14 logME 0.00 -0.06 0.02 -0.17 0.00 0.01 -0.01 0.00 0.03 0.01 -0.10 0.02 0.02

15 RNSkewness 0.01 0.05 0.14 0.15 0.00 -0.12 0.05 0.06 -0.15 0.18 0.16 0.06[-0.55 -0.21

16 StkVolume 0.01 -0.04 0.04 003 000 0.01 0.05 0.00 0.00 0.06 0.02 -0.04 -0.03 -0.06

17 OptVolume 0.00 0.01 0.01 0.02 000 0.00 0.03 0.00 0.00 0.03 0.02 -001 0.03 0.15 -0.09 0.19

18 Openlnt(p=1) 0.00 0.01 0.01 -0.02 001 0.00 0.00 0.00 0.00 0.02 0.01 -0.02 0.04 0.18 -0.11 0.20} 0.67

19 OptBidAsk 0.01 0.02 0.07 0.12 0.00 -0.01 0.10 0.05 -0.04 0.17 0.12 -0.04 0.09 -0.16 -0.01 -0.23 -0.06 -0.08
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Table A6 An instrumental variable approach to identifyingetchannel for returns/order flow
predictability. The table shows that order imbatanan predict future option returns through itditgttio
predict future imbalance rather than volatility. I@ans 2 through 5 report the first stage of thelLSS
regression. The last four columns report differeetsions of the second stage of 2-SLS. | use six
instruments: lag of market-wide order imbalance \W&rdimb”), two lags of individual imbalance
(Ordimb), lag of order imbalance for short-term iops (Ordimb(p=1)) as well as two volatility
measures: absolute stock return (AbsStkRet) andtad] absolute return (RelAbsStkRet). Option return
(Ret) are computed for a delta-neutral straddlé¢fgar (long) based on the call-put pair which legest

to at-the-money for options with approximately 3ysl to expiration. The order imbalance is based on
the difference between the number of buy and ssdlets, normalized by the total number of trades on
given day (Ordimb) or by the average number of gsadh the previous 30 days (AdjOrdimb).
RelAbsStkRet is absolute stock returns normalizaeétshaverage over previous 50 days. All regression
include a battery of control variables. The absotstatistics reported in parentheses are baseoboist
standard errors clustered by date.

1 Stage 2" Stage
AdjOrd MWOrd AbsStk RelAbs OptRet
Imby Imby Ret  StkRet P

MWOrdImby., 0.642 0.632 0.035 1.919

(8.03) (24.10) (4.33) (6.06)
Ordimby., 0.180 -0.001 0.000 0.014
(30.86) (3.10) (1.70) (2.50)
Ordimh., 0.088 0.001 0.000 0.022
(38.41) (3.59) (2.12) (4.03)
Ordimb(p=1)., -0.010 0.001 0.000 0.020
(3.13) (1.93) (2.52) (3.32)
AbsStkRet 0.181 0.006 0.038 -4.174
(2.26) (0.19) (2.24) (8.76)
RelAbsStkRet, 0.010 0.001 -0.001  0.094
(5.56) (1.94) (2.83) (8.27)
IV_AdjOrdIimb, 0.078 0.043 0.043 0.044
(12.89) (15.76)  (15.79) (12.83)
IV_MWOrdImb, 0.279 0.279 0.300
(7.12) (7.11)  (6.06)
IV_AbsStkRet 0.000
(0.00)
IV_RelAbs
StERet -0.007
(0.72)
Other Controls + + + + + + + +
R 0.04 0.68 0.25 0.10 0.05 0.05 0.05 0.05
N (in 1000s) 1,186 1,215 1,221 1,221 1,175 1,169 1,169 1,169
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Table A7 Other significant predictors of option returns.gRsssions of future option returns on lagged
explanation variables and order imbalances. Colimreports standard deviations to facilitate the
computation of economic magnitude. Column 4 useshbsample of 200 stocks with most liquid options
(measured as dollar options volume over previousdzys). Column 5 uses a subsample of options with
the bid prices larger than 2 dollars. Column 6 repeegression for two-day-ahead option returny (da
t+1) as a dependent variable. The last column refrdigidual regressions with only intercept and the
variable itself. Variables are described in Apparli’RelOICall” is call options open interest reélat to
total. "Weekend” is Friday dummy controlling for akend returns. “AbsStkRet is absolute stock
returns. “diff(IV).," is one-day change in implied volatility for shderm options. “OptBidAsk” is the
dollar option bid-ask spread. “MeanStkVolume” isdia® stock volume in the previous 75-days. “IV60-
StdRet” is volatility premium measured as differbatween 60-day ATM implied volatility and histaalc
volatility. “IV(p=1)" is implied volatility for shat-term options. “COStdRet - StdRet” is open-close
volatility relative to close-to-close volatility.IPregressions except the last column control tk@ration
period and earnings announcement dummies. All bisahave subscript “t-1” unless otherwise stated.
The absolute t-statistics reported in parenthesebased on robust standard errors clustered by dat

Std. OptRet OptRet OptRet
pev. OPREL  o50mig  pre.>g2 OPRELLhhivid.
RelOlCall(p=1) 0.18 -0.003 -0.003 -0.002  -0.004 o
(1.92) (0.85) (0.55) (3.06) (1.53)
RelVolCall(p=1) 0.30 0.002 0.004 0.003 0.004 0.0
(3.15) (1.59) (2.23) (2.14) 0.12)
RelVolPutOTM(p=1) 0.25 0.002 0.004 0.003 0.001 0.00
(2.54) (1.45) (1.75) (0.60) (2.09)
Weekend 0.40 -0.013 -0.011 -0.001 0.000 -0.013
(4.47) (3.56) (0.11) (0.06) (4.31)
AbsStkRet 0.02 0.162 0.118 0.101 0.070 0.129
(6.00) (3.33) (2.57) (2.23) (5.57)
OptRet, 0.10 -0.042 -0.032 -0.032  -0.004 -0.008
(7.64) (3.54) (3.36) (0.54) (1.42)
diff(1V) 0.04 -0.096 -0.043 -0.058  -0.013 -0.072
(7.09) (2.10) (2.91) (0.78) (4.88)
OptBidAsk 0.25 0.003 0.011 0.003 0.009 0.004
(1.49) (2.90) (1.31) (4.20) (1.70)
StkRet, 0.03 0.071 0.094 0.132 0.021 0.025
(2.50, (2.74 (3.19 (0.95 (0.91
StkRet6M 0.39 -0.004 -0.004 -0.002  -0.003 -0.005
(2.63) (2.35) (1.51) (2.02) (2.93)
MeanStkVolume 0.28 0.008 0.005 0.007 0.002 0.010
(3.56 (1.62 (2.02 (112 (3.89
IV60-StdRet 0.16 -0.003 -0.004 -0.010  -0.002 -0.005
(0.93) (1.09) (1.89) (0.55) (1.18)
IV(p=1) 0.23 -0.017 -0.007 -0.003  -0.003 0.003
(3.44) (1.17) (0.38) (0.69) (0.97)
COStdRet - StdRet 0.03 -0.028 -0.089 -0.083  -0.019 -0.010
(3.87) (2.33) (2.33) (2.67) (1.98)
MeanOptVolumeUSD 2.12 0.000 0.001 0.000 0.000 0.0
(0.64) (2.11) (0.20) (0.56) (1.07)
Other Controls + + + + -
R? 0.02 0.02 0.03 0.02
N (in 1000s) 1,253 251 214 1,191
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Table A8 Robustness tests. Regressions of future optiom®an lagged explanation variables and order
imbalances. Column 2 reports a baseline case \uibht-term option returns as a dependent variable.
Columns 3 and 4 study option returns on t#ay (two-days ahead) and day4 (one week ahead).
Column 5 uses delta-neutral call returns insteasdtmafddle returns. Column 6 uses a subsample of 200
stocks with most liquid options (measured as dadlations volume over previous 250 days). The last
column studies changes during the 2008 crisis. rises” is a dummy which equals to one between
August 2007 and January 2009. Option returns amgpuated for a delta-neutral straddle portfolio (Ipbng
based on the call-put pair which is closest tchatrhoney. The order imbalance (“Ordimb”) is basad o
the difference between the number of buy and ssdlels normalized by the total number of trades on a
given day. MWOrdIimb is a market-wide order imbaknall regressions include a battery of control

variables. The absolute t-statistics reported memtaeses are based on robust standard errorsreldigty
date.

OptRet OptRet.; OptRet,; OptRetCall gg (t)Fé?t OptRet
19
Ordimh., 0.007 0.004 0.001 0.010 0.009 0.007
(15.79) (7.05) (2.74) (13.43) (8.46) (13.45)
MWOrdImb,; 0.195 0.128 0.101 0.249 0.190 0.155
(9.32) (5.74) (3.61) (8.25) (8.35) (6.79)
n_crises 0.012
(3.01)
n_crises*Ordimb; 0.002
(2.33)
n_crises*MWOrdImh., 0.119
(2.28)
Other Controls + + + + + +
R 0.02 0.01 0.01 0.02 0.02 0.02
N (in 1000s) 1,132 1,112 1,111 1,132 236 1,132
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Table A9 Robustness tests for the microstructure methodtdile adds several new variables compared
to the previous table and also considers ten-seewalliation period. The new control variables idelu
the contemporaneous and lagged stock returns fadjder direction and option deltdsS; = |A|/C,
dS._; *|A]/Cy), dummies for the first and last hours of tradiegrnings announcement day dummy. Due
to new control variables (earnings days), stock-fiegd effects have to be replaced with stock fixed
effects. The absolute t-statistics reported in pteses are based on robust standard errors eldidigr
date. Sample size is 7,684,040 observations foegiessions.

Five-second price impact Ten-second price impact
Information Inventory Information Inventory
Absolute Delta]A| -0.569 -1.525 -0.855 -1.708
(18.21) (39.12) (19.20) (38.91)
|Alif |A] < 0.4 -0.119 -0.363 -0.128 -0.388
(5.88) (12.46) (4.71) (11.35)
|Al,if 0.4 < |A] < 0.6 -0.121 -0.253 -0.142 -0.273
(14.51) (23.06) (13.27) (21.24)
\/Days to Expiration -0.017 -0.040 -0.028 -0.045
(16.93) (38.64) (19.22) (40.06)
Call/Put Dummy -0.016 0.061 -0.006 0.074
(4.97) (13.58) (1.22) (13.47)
Option Pricel;, $ 0.005 0.032 0.018 0.040
(3.09) (14.36) (7.2) (15.96)
Buy/Sell Dummy 0.035 0.160 0.049 0.171
(5.72) (26.60) (7.16) (25.18)
VTrade Size 0.030 0.017 0.029 0.019
(38.09) (18.35) (27.26) (17.20)
Trade Size, Contracts -0.000 -0.000 -0.000 -0.000
(16.39) (9.66) (14.20) (10.36)
dsS, = |A]/C, 0.572 0.082 0.865 0.092
(44.22) (8.78) (57.05) (9.33)
dsS._; = |Al/C, 0.345 0.229 0.407 0.236
(33.11) (22.71) (33.66) (22.89)
Last Hour Dummy 0.008 0.019 0.020 0.027
(2.04) (3.48) (3.11) (3.81)
First Hour Dummy 0.019 0.039 0.035 0.048
(5.64) (8.7) (7.41) (8.67)
Earnings Day Dummy 0.045 0.034 0.078 0.036
(2.50) (2.25) (2.99) (2.16)
R 0.04 0.01 0.05 0.01
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